Record Detail
Advanced Search
  Text
Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications: BSDEs with Jumps
      Description Not Available
      
    
  
    
  Availability
No copy data
Detail Information
| Series Title | 
           EAA Series 
         | 
      
|---|---|
| Call Number | 
           - 
         | 
      
| Publisher | Springer : England., 2013 | 
| Collation | 
           - 
         | 
      
| Language | 
           English 
         | 
      
| ISBN/ISSN | 
           978-1447153306 
         | 
      
| Classification | 
           NONE 
         | 
      
| Content Type | 
           text 
         | 
      
| Media Type | 
           - 
         | 
      
|---|---|
| Carrier Type | 
         - 
         | 
      
| Edition | 
           - 
         | 
      
| Subject(s) | |
| Specific Detail Info | 
           We investigate a backward SDE with a generator and a terminal condition which depend on the state of a Markov process solving a forward SDE driven by a Brownian motion and a compensated Poisson random measure. Such an equation is called a forward-backward SDE. In the Markovian setting we show that the unique solution to a backward SDE can be written as a function of a forward state process. We derive formulas for the control processes by applying the Itô’s formula and the Malliavin calculus. We establish the connection between the solution to a BSDE and the viscosity solution to a partial integro-differential equation. A generalization of the Feynman-Kac formula is given. We also deal with a coupled forward-backward SDE in which a solution to the backward component also affects the forward component. 
         | 
      
| Statement of Responsibility | 
           - 
         | 
      
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly
        





